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Summary. Employing the Hilbert space ansatz, a fully quadratic coupled-cluster 
method with a multidimensional reference space is applied to a DZP basis study 
of the model system, H a . The reference space is described by two to four 
configurations at the level of  single and double excitations, and single and double 
excitation operators are included in the expansions for the cluster and wave 
operator through quadratic terms. The performance of quadratic MRCCSD is 
investigated for the ground and three excited states of  the H a system consisting 
of two stretched hydrogen molecules in a trapezoidal configuration where the 
degree of  quasidegeneracy is varied from a nondegenerate situation to a com- 
pletely degenerate one. Compared to full CI, in the highly degenerate region, the 
MRCCSD works quite well. In less degenerate regions, the accuracy is less 
satisfactory. 

Key words: Coupled-cluster - Hilbert space ansatz - H 4 model system - 
MRCCSD-DZP 

1. Introduction 

Numerous applications of the single-reference coupled-cluster (CC) method [ 1, 2] 
during the past two decades (for reviews see [3-8] and references therein) have 
demonstrated the success of this method in treating the correlation problem for 
various properties of molecular systems. It is probably fair to say that the 
coupled-cluster method which combines the conceptual simplicity of  the one- 
determinant-reference formulation with infinite-order summation of the most 
important dynamic correlation terms represents, for the time being, the most 
powerful tool for a ( size) -extensive description of the electronic structure for 
nondegenerate states of molecules. The alternative truncated variational expan- 
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sions in configuration interaction (CI) theory, which furnish an upper bound to 
the exact energy, are known to suffer from inextensivity, usually requiring an "a 
posteriori" approximate correction [9-13]. 

Though in many applications single-reference CC methods can describe 
highly degenerate electronic states of atoms and molecules, it will eventually fail 
when sufficiently difficult nondynamic correlation effects are encountered. This 
deficiency prevents exploiting nondegenerate CC theory for cases where the 
degree of degeneracy varies over a wide range from a completely nondegenerate 
situation to a nearly degenerate one, as occurs in studies of many potential 
energy surfaces and excited states of molecules. 

Multi-reference variational CI methods are well known [14-17]; however, 
several attempts to extend single-determinantal many-body perturbation theory 
(MBPT) [18-23] and allied CC [10, 24-37] to a general multi-reference case 
have also been made. Nevertheless, the more intricate structure of "many-body" 
theories greatly complicates the solution of the problem. Depending upon the 
form of wave operator employed, multi-reference CC approaches can be divided 
into two broad classes, namely Fock space or valence-universal CC methods 
[24-28] and Hilbert space or state-universal CC approaches [10, 29-37]. The use 
of a complete active space is formally and computationally simpler, but can 
suffer from intruder states [38]. Recent formulations using an incomplete refer- 
ence have now been developed [36, 37, 39-43]. Here, we limit ourselves to a 
complete model space. 

Fock space multi-reference CC approaches aimed at the calculations of 
ionization potentials [44, 46, 47], electron affinities [46] and excitation energies 
[44, 46-48], are becoming routine in several groups [44-48]. However, applica- 
tions of the alternative Hilbert space formulation have been limited to the 
linearized version of MRCC [10] with prediagonalization as presented by Laidig 
and Bartlett [30, 31], a related formalism of Banerjee and Simons [32], and to 
some more rigorous effective Hamiltonian model calculations [33, 35, 49]. 

The problem undertaken in this paper is a part of a wider project directed at the 
development and implementation of the Hilbert space multi-reference CC method 
for full-scale calculations of molecular systems. Here we present results obtained for 
the model system of H4 [50]. These represent an extension of the earlier applications 
of an orthogonally spin-adapted MRCC formalism of Paldus et al. [35] as well as of 
a quadratic MRCCD formalism developed by Meissner et al. [33]. In our 
formulation we focus on the full inclusion of all quadratic terms and some higher 
terms in the expansion for both cluster and effective Hamiltonian operators within 
the single and double excitations (CCSD) approach [51], with special attention paid 
to the comparison of the performance for the closed- vs. open-shell model 
configurations included in a complete model space. Presenting results for formally 
a four-configurational (two of one symmetry and two of another) MRCC study of 
the prototype system H 4 w e  want to discuss some theoretical and numerical 
problems in our formulation connected with the convergence of nonlinear CC 
equations for individual model states, the choice of model space itself, and the 
related question of the selection of the reference starting vector. 

A short synopsis of the state universal MRCCSD method is given in Sect. 2. 
Besides basic equations we also sketch the general derivation to show how all 
nonphysical terms of unlinked or disconnected character are eliminated in our 
formulation which differs somewhat from others [35]. Comparisons of MRCC 
results for the trapezoidal H4 model system with corresponding FCI values and 
energies provided by other correlated methods are presented in Sect. 3. 
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2. Theory 

2. I. Overview o f  the multi-reference approach 

The basic concept of  multi-reference coupled-cluster theory is a wave operator f2 
which operating on the model function 7 ~° defined within a model space P 
generates the exact wavefunction ~g: 

= ~ o  (1) 

The wave operator fulfills an equation, which may be looked upon as corre- 
sponding to the Schr6dinger equation for the wavefunction, known as the Bloch 
equation [52, 53]: 

If2,/q0]/3 = l?~/~ __ f~ff~'f~ff (2) 

Here /3  is a projection operator: 

/3~P = 7 ~° (3) 

/32 =/3 (4) 

d 

= Z (5) 
I = l  

which defines the d-dimensional model space spanned by the zeroth-order 
wavefunctions 0~ I. 

When substituting the exact wavefunction, Eq. ~(1), into the Schr6dinger 
equation and operating from the left with a projector P we obtain the expression: 

/3/~f~Tj0 =/~efr~0 = E~O (6) 

which defines the effective Hamiltonian operator /~efr. This operator has the 
property that while operating in the subspace of  the complete Hilbert space, it 
gives a part of  the energy spectrum of  the exact Hamiltonian. 

The general form of the wave operator adopted in the coupled-cluster theory 
is as an exponential: 

0 = e  ~ (7) 

where 7 ~ is the cluster operator defined by the expression: 

t=EL (8) 
n 

= (n!) -2 Z tats"5~,"fii f i +  " " • fin+~ " ' "  ~q (9) 

and ak,  ^ + [~, are the second-quantized creation and annihilation operators, respec- 
tively. (The indices ak, ik and summation run over all virtual and occupied 
spinorbitals, respectively.) 

In the multi-reference approach the unique construction of the wave operator 
is, according to Eqs. (7-9) ,  no longer possible. Since the reference state contains 
several functions a distinction between hole and particle states is no longer 
obvious, as the spinorbitals occupied in one reference determinant may be empty 
in another. In general we have the option to assume either a fixed vacuum state, 
i.e., the same for all P-space reference functions, or a reference-dependent one, 
i.e., each of the reference functions plays, in turn, the role of  the vacuum. 
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Out of the several originally proposed formulations of the multi-reference CC 
theory [24, 25, 29] two are evolving into computationally tractable schemes. 
These, already mentioned in the introduction, are the Fock space valence-univer- 
sal approach and the Hilbert space state-universal approach. The first of these is 
based on the definition of the wave operator proposed by Lindgren [25] which 
can be expressed as: 

0 = {e~'}P (10) 

where the operator 7 ~ is identical for all reference functions and the braces 
indicate that the normal-ordering operation should be applied to all operator 
products after expansion. The explicit form of T depends on the assumed 
vacuum function. The characteristic feature of valence-universal approaches is a 
non-commutativity of the cluster operators, hence it is convenient to impose a 
normal-ordering condition on the products of 7 ~ operators. It is common to 
assume that one of the reference functions (usually the ground state) is adopted 
as a vacuum state, as has been done in the applications of Kaldor [44], 
Mukherjee [45], Bartlett [46-48] and co-workers. 

In the alternative Hilbert space approach as developed by Jeziorski and 
Monkhorst [29], the wave operator is expressed as: 

f] = ~ eC'(K)_P K (11) 
K 

where the ranges of the summations over a and i in Eq. (9) do not overlap and 
are strictly defined by the ~K determinant due to the fact that the vacuum is 
formed by the current reference function ~x [19, 54]. In each of the mentioned 
approaches a general rule is valid that none of the 7 ~. operators can produce 
excitations within the model (P) space. 

Inserting the wave operator defined by Eq. (11) into the Bloch equation, Eq. 
(2), and operating on the Kth reference determinant we arrive at the general 
expression [29]: 

[e~("), ~0]l~K > - - ?e~(K)I~K> - Y e~(L)I~L >(~L ] ?em' ) l~K> (12) 
L 

where K and L run over all reference configurations. Projecting Eq. (12) onto the 
subspace of the singly and doubly excited configurations with respect to &K we 
obtain CC equations for single-: 

<4)a (K)I[em% #o]1 ~ , )  = <~'(K)I?e~( ' : ) l~, ,  ) 

--~, (~7(K)[ e~(L)I'I)L)('I'LI~'e¢(K)IeI'K) (13) 
L 

and double-excitation amplitudes: 

<~b(K)  ][e ~(K),  o]l, K > = <~'~(K) IC'e"K)I~'K> 

- ~  (~.b(K)] e¢(L)[~ ) ( ,~ l ee~(" ) l~ ,¢ )  (14) 
L 

and analogous expressions for higher rank amplitudes. This provides a starting 
point for the derivation of explicit recursive formulae for tl, t2 . . . .  coefficients. 
The detailed equations, for reference spaces containing excitations through 
hextuples which is complete for a MRCCSD model, are presented elsewhere 
[55]. 
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2.2. General structure o f  the Hilbert space multi-reference CC equations 

The general CC equations, Eqs. (13, 14), are represented in terms of many- 
electron functions. To enable their efficient implementation it is convenient to 
express them in terms of t amplitudes and one- and two-electron integrals. The 
standard method is to rewrite all the involved operators in terms of creation- 
annihilation operators, to expand exponentials, and to generate all possible 
products of t amplitudes and integrals. Here we will only refer to some general 
structural features. 

As was already mentioned in the introduction, the Hilbert space approach is 
conceptually similar to the single-reference method. If  we suppress the second 
(the so-called renormalization) term on the right-hand side of Eqs. (13, 14), then 
from the point of view of the particular reference ~b x we obtain the single-refer- 
ence equations [51]. The only difference is that certain amplitudes responsible for 
excitations within the model space are excluded from the summation in Eq. (9): 
Most of the single-reference derivations are simplified by operating with the e -  r 
operator on the left-hand side of Eq. (12) to take advantage of the Hausdorff 
commutator formula which automatically ensures connectivity of the resulting 
expansion. We could follow that route also in the multi-reference derivation [29], 
however, we obtain the product e - ~(K) e ~(L) which is cumbersome. Alternatively, 
we can work directly with Eqs. (13, 14). In this approach, however, unlinked 
and - in the case of Eq. (14) - also disconnected terms appear and we have to 
demonstrate that they vanish from the final form of the CC equations. 

In doing so we observe that the unlinked terms generated by the first term on 
the right-hand side of Eqs. (13, 14) are of the same form as those occurring for 
the single-reference formulation. In that case, they are cancelled by the energy 
term. If  we look closely at the renormalization term in Eqs. (13, 14), we see that 
the diagonal part of the effective Hamiltonian, i.e., the term in the summation 
corresponding to L = K is nothing else than the familiar single-reference energy 
expression and the cancellation of the unlinked contributions is carried out in the 
same manner as in a one-determinantal CC approach [6b]. 

In an analogous manner we may show that the disconnected terms disappear 
from Eq. (14). We note that they occur both for the left-hand side and for two 
terms on the right-hand side of Eq. (14), since in all three situations the 
projection on ~ b  will give us an equivalent of either a t~ b amplitude or of a 
product of two t 1 amplitudes (i.e. tTt b - t]tb). Similarly as in the case of the 
single-reference equations we observe that a substitution of the expression given 
by E q. (13) for one of the tl amplitudes eliminates the disconnected terms from 
the T2 equation. In the present case, however, elimination is not complete and 
some residual disconnected contributions survive. By performing an order-by- 
order analysis it may be shown that those apparent disconnected terms, although 
formally expressed in terms of disconnected diagrams, provide important exclu- 
sion principle violating (EPV) contributions to the folded MBPT diagrams 
[54, 55] generated by the iteration of the renormalization part of Eq. (14). 

To conclude our discussion on the nature of the MRCC equations we 
mention the fact that although the expression (~b~jb(K)[ 1 "~ e ¢(K)] ~K ) occurring in 
the direct part of Eq. (14) generates both unlinked and disconnected diagrams, 
an analogous expression occurring in the definition of /~efr, i.e., 
(q)~b[Ve~'(x)]~x) generates only connected contributions. This is due to the 
completeness of the model space which is equivalent to the assumption that all 
amplitudes have to carry at least one passive label, i.e., they are not allowed to 
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produce excitations within the model space. Thus the final equations for t}' and 
t~ b are expressed in the form: 

D']t'](K) = (q~'](K) ll?et(K)l#K) c -  ~" ( (~} ' (x)  l et(L)l~ L)HLK)c (15) 
Lv~K 

ab ab 
D i j  t i j  (K) : <~jb(K)IVe~K'I~K>c -- E e (L'I L)HL' )C 

L # K  

- E (t~(K) -- t~(L)) ( (~(K)]e~(Z)[q)  L)HLK)c (16) 
L#K 

where in the last term of Eq. (16), which generates apparent disconnected terms, 
all possible permutations of a, b and i , j  labels are assumed. The letter C indicates 
that only connected terms are considered. 

Let us define w~v...~ amplitudes creating excitations within the model space as: 

w ~:22 (K) = ( ~  ~:i: (K) IV e T(K) 1 4~ K ) (17) 

We notice that neglecting the renormalization terms (and apparent disconnected 
ones in case of Eq. (16)) gives us the familiar single-reference equations for t] 
and t~ b amplitudes. An analogous formula is obtained also for w, and w,~ 
amplitudes, with an exception that we do not include the denominator and the 
summation over external indices is limited to the active labels. 

Since in actual applications the t amplitudes are reference dependent we need 
to store d sets of t~ and t 2 amplitudes (where d is the size of the model space). 
The calculations are performed iteratively in the same manner as in the case of 
a single-reference approach. We assume starting t~ and t~ ° amplitudes (equal 
usually to one- and two-particle integrals divided by denominators, respectively) 
for each reference determinant. To complete the zeroth-order iteration we 
compute the whole set of w amplitudes, Eq. (17), creating an effective Hamilto- 
nian matrix. In the next step new t(K) amplitudes are evaluated on the basis of 
t(K) amplitudes (direct part of Eqs. (15, 16)) and t(L) and w(L) amplitudes 
(L # K) (renormalization part of Eqs. (15, 16)), all of them determined in the 
previous iteration. We see that in each iteration we have to iterate simultaneously 
all sets of t amplitudes and to compute the effective Hamiltonian matrix. It 
should be emphasized that due to the presence of the renormalization term in 
Eqs. (1 5, 1 6) the amplitudes belonging to one reference determinant are coupled 
to those belonging to all other determinants. 

In the next section the application of a MRCC model will be presented, 
where all possible terms, linear, quadratic, cubic, and quartic are retained in the 
direct term, while linear and quadratic terms are included in the renormalization 
term. We will refer to this as "quadratic" MRCCSD. 

3. Applications 

3. I. Computational details 

A state-universal coupled cluster method for a complete model space is applied to 
study a prototypical molecular problem in which the range of quasidegeneracy of 
the electronic levels change in a broad spectrum from the entirely degenerate case 
to a nearly nondegenerate one. The problem studied is the H 4 system consisting of 
two stretched hydrogen molecules in a trapezoidal configuration where all 
nearest-neighbor internuclear separations are fixed (a = 2 a.u.) while the angle 
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~b = H1H2H3 - n/2 varies in the interval q5 ~ (0, n/2) [50]. The range of degener- 
acy of this model is determined by a parameter e defining the angle ~b = an. 

In order to compare correlation energies from our fully quadratic MRCCSD 
calculations with results provided by other variational and non-variational 
methods we have implemented both the minimal and DZP basis set used by 
Paldus et al. [35, 49] in his studies on this topic [57]. For the same reason the 
reference space in our applications is formally spanned by four configurations, 
namely the closed-shell singlet model functions biexcited with respect to each 
other (vectors included in Paldus studies), and two open-shell configurations of 
a different symmetry, resulting in two-block diagonal matrices. Both N-electron 
and N -  2 electron (QRHF [58]) references have been adopted as alternative 
choices of a starting vector, with respect to which a set of creation and 
annihilation operators may be defined. To accelerate the convergence of the 
iterative scheme for the solution of the nonlinear equations, the zeroth-order 
one-particle energies are shifted [56, 59] to make the gap between active space 
and core and particle subspaces, respectively, more pronounced. We have tested 
several alternative ways of solving Eqs. (15, 16) with the best results provided 
when both direct and renormalization terms are calculated in each iteration. As 
already emphasized, all i? amplitudes that constitute the upper vertices in the 
renormalization diagrams refer to the current intermediate model state with the 
consequence that we retrieve the amplitudes assigned to it and use those as t 
coefficients in the algebraic formulae. 

All CC calculations are performed with the ACES package of electronic 
structure codes [60] and exact correlation energies are calculated using a direct 
full CI program [61]. (Results for some geometries are already published [49] but 
for completeness we reproduce all of them here.) 

4. Results and discussion 

During the past decade the H 4 model system has been investigated by a variety 
of variation and perturbation methods using minimal [35, 50, 62-65] and DZP 
[49] basis sets. (See also the accompanying article in the present volume [66]). In 
order to shed light on the subtle interplay between dynamic and nondynamic 
correlation effects the main focus has been on the performance of the methods in 
situations where a different degree of degeneracy of electronic levels occurs. Our 
study represents a natural extension of this effort reporting results from the 
complete Hilbert space MRCCSD approach with the inclusion of all terms both 
in the direct and all quadratic terms in the renormalization part of Eqs. (15, 16). 

Previous studies on the topic [49, 50, 62-65] have pointed out that a single- 
reference CC approach with a satisfactorily flexible cluster expansion can be 
applied even for the description of highly degenerate situations. When we look at 
the efficacy of such calculations, however, the question arises of how to achieve 
a balanced truncation of the expansions for the cluster amplitudes and the 
effective Hamiltonian. The first step in answering this question is the extension of 
the single-determinantal model space to include in the reference the first excited 
state of the same symmetry (which becomes quasidegenerate with the ground 
state for parameter c~--*0). Formally, the complete model space comprises also 
two open-shell configurations of a different symmetry, which in our formalism 
provides an opportunity to study the convergence for both closed- and open- 
shell correlation problems. 
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Table 1. Comparison of the minimal basis set FCI and MRCC correlation energies for the H4 model 
as a function of the parameter ~ (all energies in mH). The MRCC values indicate the difference of 
CC energies from corresponding FCI values 

X1A1 a 3Bla 1Bla IAla 

FCI MRCC b FCI MRCC b FCI MRCC b FCI MRCC b 

0.0 - 117.621 0.046 - 111.392 c 31.676 -0.066 - 7.268 0.002 
0.041 0.000 

0.05 - 76.428 - 0.045 - 29.177 0.313 131.638 - 0.006 118.949 0.062 
-0.245 0.041 

0.1 -65.321 -0.209 27.541 0.920 211.379 -0.079 221.429 -0.662 
- 0.702 - 0.749 

0.15 -60.039 -0.605 65.062 1.368 268.828 -0.073 280.305 -2.445 
- 1.401 - 2.595 

0.2 -57.260 - 1.070 88.713 1.677 307.525 -0.020 310.718 -4.390 
-2.089 -4.468 

0.3 -54.775 -1.703 111.328 2.048 347.156 0.106 333.482 -6.523 
-2.804 -6.711 

0.4 -53.905 - 1.928 118.359 2.224 360.307 0.194 337.505 -7.001 
-2.902 -7.195 

0.5 -53.689 -1.975 119.824 2.275 363.143 0.224 337.644 -7.039 
- 2.883 - 7.234 

a Despite the higher symmetry for the square (ct = 0.0) and linear (c¢ = 0.5) structures, we use the C2v 
symmetry notation for all geometries 
b The current MRCC results are obtained from fully-quadratic multi-reference calculations while the 
prior MRCCSD applications [35] for the A1 states included only the 7~22/2 quadratic contribution 
(first and second line, respectively) 
c The corresponding FCI results are not available 

Table  1 compares results of  our  min imal  basis set two-configurat ional  
M R C C S D  study of  H a in compar i son  with available correlat ion energies provided 
by the Hilbert  space or thogonal ly  spin-adapted CC method  of Paldus et al. [35]. 
It  should be emphasized, that  in our  calculations,  at least all quadrat ic  contr ibu-  
t ions are included in bo th  (direct and  renormal izat ion)  terms on the r ight -hand 
side of Eqs. (15, 16), while the Paldus et al. appl icat ion only incorporates  the 7~2/2 
quadrat ic  terms in the CC equations.  In  order to make a meaningful  test of  the 
performance of  our  formula t ion  all results are compared  with exact F C I  energies. 

Two facts are immediately apparent  when compar ing  the M R C C S D  energy 
values for closed-shell model  configurat ions in Table  1. Consider ing the sign of 
deviat ions from the FCI  values, the correlat ion energies from both  M R C C  
methods  approach the exact energies from below with the largest differences for 
the nondegenera te  regions of the energy surface (Fig. 1). As far as absolute 
values of the correlat ion energies are concerned,  the appl icat ion with full 
inclusion of  quadrat ic  terms provides a better  approx imat ion  to the exact FCI  
energies over the whole spectrum of geometries studied. In  the vicinity of 
complete degeneracy (~ = 0) there is excellent agreement  between the two M R C C  
approaches, while moving  towards the nondegenera te  region increases the differ- 
ences. This can be at t r ibuted to the relatively higher impor tance  of singly excited 
states for nondegenerate  si tuations which affects the size of the ~p2/2 and  7~1 7~2 
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Fig. 1. Differences of 
minimal basis set MRCCSD 
correlation energies from 
exact FCI values AE,  

A E  = E - EFcI ,  for the 
ground and three excited 
states of the model system 
H4 (all deviations in mH) as 
a function of c~ (see text). 
The methods are identified 
as follows: fully-quadratic 
MRCCSD; (II) root XIAi; 
(D) root IA1; (A) root 3BI; 
(A) root IBj; MRCCSD 
including only the 7~/2 
quadratic contribution [35]; 
(0) root X1A1; 

((3) root 1A 1 

quadratic contributions, not included in Paldus et al. calculations [35]. It should 
be emphasized, however, that already incorporating the 7~/2 terms into the 
linear CCSD expansion qualitatively improves the convergence of  the MRCC 
correlation problem, which is affected by intruder states, and provides a good 
approximation to the fully quadratic MRCCSD method. Contrary to the 
closed-shell MRCC results, the multi-reference correlation energies for open-shell 
configurations approach the exact energies from above. 

The open-shell states, 3B l and 1B1, have a somewhat different behavior. The 
absolute deviations from FCI energies for the 3B 1 configuration vary with respect 
to the degeneracy occurring with the best convergence for the quasidegenerate 
situations (Fig. 1), while the open-shell singlet, ~B~, energies are in very dose 
agreement with the corresponding FCI energies for the whole range of 
geometries. The importance of open-shell singlets in chemistry and their inability 
to be adequately described in single-reference theories (unlike 3B1) makes 
MRCC methods especially relevant. 

As mentioned previously, to investigate the use of other orbital choices, 
besides the N-electron orbitals we have implemented the MRCC method with 
orbitals taken from an N -  2 (QRHF) electron reference [67]. For all the 
situations studied, the QRHF orbitals are seen to provide worse convergence of 
the multi-reference CCSD expansion, with the deviations from the FCI energies 
increased about 30-40% compared to the results corresponding to the 
N-electron reference set. 

It is well known [49] that the main insufficiency of  the minimal basis set H4 
model is the fact that the complete configuration space is spanned by a very few 
configurations (e.g. it contains only one tetra-excitation). In order to decide 
whether the semiquantitative agreement of MRCCSD results with the exact FCI 
energies (see Table 1) is caused mainly by mutual cancellation of the limitations 
in our calculations we have decided to investigate also an extended double zeta 
plus polarization basis (DZP) for H4, suggested by Paldus et al. [49]. 

Applications of the MRCISD approach and LMRCC method [49] for the 
larger DZP basis demonstrate both merits and shortcomings of  the multi- 
reference model. In the case of  variational approaches, MRCISD provides truly 
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Fig. 2. The single- and 
multi-reference CC and CI 
relative energies 
A E  = E -  E v a  , (in mH) as 
a function of e (see text) 
for the ground state of the 
DZP H 4 model system. 
The various methods 
are identified as follows: 
(4.) CCSD; 
(©) MRCISD; ( , )  fully- 
quadratic MRCCSD 

satisfactory results (in comparison with single-reference CI models) with rela- 
tively small differences from the exact energies across the whole range of 
quasidegeneracies studied (Fig. 2). The application [49] of an approximate linear 
MRCC method [10, 30] provides expected results where the linear CCSD corre- 
lation energies approach the exact FCI energies from below with the largest 
deviations in the nearly degenerate region. Considering the analogy to the 
single-reference CCSD approach, we can expect that employing our extensive 
fully-quadratic MRCCSD model should improve the linear multi-reference CC 
description over the whole spectrum of geometries studied. 

Table 2 summarizes results of the DZP four-configurational fully quadratic 
MRCC study of the H 4 model system. Comparing MRCCSD correlation ener- 
gies for the ground state with the exact FCI results, we can observe an 
overestimation analogous to that for the minimal basis H 4 model (Fig. 2). 
However, when we look more closely at the multi-reference DZP values for all 
geometries we can distinguish two regions that differ by the convergence pattern 
for restricted CCSD expansions for the cluster operator and effective Hamilto- 
nian, respectively. In the degenerate region characterized by • ~< 0.05, MRCCSD 
correlation energies represent an excellent approximation to the exact energies. 
For the nondegenerate situation, however, the deviations of the multi-reference 
CCSD energies from the exact values increase monotonically, contrary to 
single-determinantal CCSD results which asymptotically approach the FCI limit 
from above (see Fig. 2). 

The explanation for this behavior can be found when observing the differ- 
ences between the exact energies for the two model states in Table 2. For 
instance, for point ~ = 0.005 the energy gap between the first and second root is 
0.083712 a.u., with the rest of the Q space fairly well separated (the energy 
difference between the second and third FCI root being 0.19845 a.u.e.g.). For 
the nondegenerate case (e = 0.5) the situation is just the opposite, with the 
difference between the energies of the model states (0.367595 a.u.) being 8.2 times 
higher than the energy gap between the second and the third root. Moreover, the 
excited model state does not correspond to the second root in the FCI solution 
when an open-shell excited state of the same symmetry lies 0.044755 a.u. below 
the first closed-shell excited configuration. Because of an apparent intruder state 
problem (as already discussed in [35]) the single-reference description of the 
ground state with the second configuration being included in the Q space is more 
successful for the nondegenerate region than the two-configuration model 
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Table 2. Energies for the DZP H 4 model obtained using fully-quadratic MRCCSD for four model 
configurations (all values in mH). The deviations of the multi-reference results from FCI energies are 
shown for the MRCCSD method. The first result for each ct corresponds to using N-electron SCF 
orbitals while the second employs N -  2 electron orbitals 

J(1Ala 3Bla 1B1~ IAla 

FCI MRCCSD FCI MRCCSD FCI MRCCSD FCI MRCCSD 

0.0 -131.361 -0.687 -142.530 0.058 -47.637 1 . 3 2 7  -49.680 3.370 
- 0.322 0.339 1.159 3.003 

0.005 -123.831 -0.664 -133.667 0.048 -37.917 1.385 -40.119 3.356 
- 0.308 0.326 1.181 2.994 

0.01 -117.956 -0.594 -125.045 0.030 -28.293 1.420 -29.192 3.299 
- 0.260 0.304 1.218 2.955 

0.015 -113.412 -0.503 -116.715 0.048 -18.754 1.433 -17.275 3.228 
-0.199 0.318 1.233 2.907 

0.02 -109.870 -0.408 -108.627 0.059 -9.351 1.462 -4.729 3.160 
-0.135 0.323 1.264 2.865 

0.05 -98.647 -0.084 -65.377 0.217 43.759 1.671 71.152 3.060 
0.032 0.460 1.507 2.882 

0.1 -91.006 -0.172 -11.021 0.600 117.575 2.070 168.217 3.491 
-0.236 0.839 2.012 3.293 

0.12 -89.169 -0.322 5.526 0.740 141.866 2.238 194.947 3.585 
- 0.463 0.986 2.234 3.310 

0.15 -87.121 -0.714 25.765 0.945 173.024 2.498 224.624 3.462 
- 0.900 1.204 2.582 3.039 

0.2 -84.953 -1.186 49.710 1.145 212.255 2.889 254.831 2.767 
- 1.744 1.426 3.129 2.132 

0.3 -83.042 -1.995 73.250 1.412 254.429 3.490 279.104 1.721 
-3.108 1.714 4.023 0.997 

0.4 -82.460 -2.305 80.832 1.535 269.301 3.810 284.609 1.652 
- 3.786 1.840 4.538 1.041 

0.5 -82.333 -2.375 82.481 1.571 272.710 3.907 285.262 1.723 
-3.983 1.876 4.701 1.173 

" See footnote (a) in Table 1 

space approach. An alternative (and more general) way to improve the 
MRCCSD results for the nondegenerate situation lies in extending the limited 
singles and doubles formulation to include tri- and tetra-excitations within the 
model space (which is now in progress). 

Finally we present a comparison of  quadratic MRCCSD results for four 
model functions with exact FCI energies (Fig. 3). As was already mentioned the 
deviations of  the multi-reference ground state energies from the FCI limit vary 
with respect to parameter ~ with the smallest differences bring obtained for 
energies at ~ = 0.05. The same convergence pattern can also be found for the 
lowest triplet state; however, comparing with the minimal basis set results, the 
deviations of the 3B 1 correlation energies from the FCI values are smaller than 
the ground state ones. Comparing the results for the excited states we can see 
(Fig. 3) that the sum of  deviations for the corresponding BI and A~ roots for a 
given geometry is fairly constant for all points studied (with the excitation 
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Fig. 3. Differences of 
N-electron reference based 
DZP MRCCSD correlation 
energies from exact FCI 
values for the ground and 
three excited states of the 
model system H 4 (all 
deviations in mH) as a 
function of c~ (see text). The 
curves are identified as 
follows: (m) XIA1; (R) 
1 A I ;  ( 0 )  3 B 1 ;  ( Q ) )  ]B I 

energies overestimated by about 0.003-0.004 a.u. (A~) and 0.0015-0.0025 a.u. 
(B1) in comparison with FCI values). 

The same trends can also be observed when N-2 electron orbitals are used 
(Table 2). The results for the closed-shell (open-shell) correlation problem are 
systematically overestimated (underestimated) compared to the N-electron refer- 
ence based values, except for the ground and B1 singlet state correlation energies 
in the degenerate region (Table 2) where the results are improved. In general, the 
energy differences between corresponding A~ and B~ states are comparable with 
those for the N-electron reference. 

Generally, in contrast to the minimal basis set MRCCSD results, correlation 
energies for the excited closed-shell model functions are systematically underesti- 
mated with respect to the exact energy values, and also the corresponding 
deviations for the opexa-shell singlet configuration are much larger (Table 2). 
Clearly, the larger DZP basis introduces many more configurations and introduces 
much more correlation than in the minimum basis. Our results attest to the danger 
of drawing conclusions based on the small basis. A focus of our next study will 
be to assess whether the errors in our results are a consequence of the multi-ref- 
erence formulation in general or rather a result of the limitations in our approach. 
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